Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the following $\int\frac{dx}{x\sqrt{x^4-1}}\;(Hint:Put\;x^2=\sec\theta)$

$\begin{array}{1 1} (A)\;\sec ^{-1} (x^2)+c \\ (B)\;\frac{1}{4} [\sec ^{-1} (x^2)]+c \\ (C)\;\frac{1}{6} [\sec ^{-1} (x^2)]+c \\ (D)\;\frac{1}{2} [\sec ^{-1} (x^2)]+c\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $\int \sec^2 x dx=\tan x+c$
  • $\large\frac{d}{dx} $$(\sec x)=\sec x \tan x$
Let $I=\int\large\frac{dx}{x\sqrt{x^4-1}}$
Let $x^2=\sec \theta$
On differentiating with respect to x we get $2xdx=\sec \theta. \tan \theta.d \theta$
$dx=\large\frac{\sec \theta. \tan \theta.d \theta}{2x}$
On substituting for $x^2$ and dx we get,
$I=\large\int \frac{\sec \theta. \tan \theta . d\theta}{2 x^2 \sqrt {\sec ^2 \theta-1}}=\int \frac{\sec \theta. \tan \theta.d \theta}{2 \sec \theta \sqrt {\sec ^2 \theta-1}}$
But $\sec ^2 \theta-1=\tan ^2 \theta$
Therefore $I=\large\frac{1}{2} \int \frac{\tan \theta. d\theta}{\tan \theta}=\frac{1}{2} $$ \int d \theta$
On integrating we get $I=\frac{1}{2} \theta$
Since $ x^2=\sec \theta\; => \theta=\sec ^{-1} x^2$
Therefore $I=\frac{1}{2} [\sec ^{-1} (x^2)]+c$
answered Apr 16, 2013 by meena.p
edited Apr 11 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App