Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the following as limits of sums: $ \int\limits_0^2e^xdx$

Can you answer this question?

1 Answer

0 votes
  • $\int \limits_a^b f(x) dx= \lim_{ h \to 0} \;h\; \bigg[ f (a)+f(a+h)+f(a+2h)+....f(a+(n-1)h \bigg]$
  • where $h=\large\frac{b-a}{n}$
  • $S_n=a \bigg[\large\frac{r^n-1}{r-1}\bigg]$
$I=\int \limits^2_0 e^x dx$
We know $\int \limits_a^b f(x)dx=h\; \lim_{ h \to 0} \bigg[f(a)+f(a+h)+f(a+2h)+....f(a+(n-1)h \bigg]$
Where $h=\large\frac{b-a}{n}$
Here $a=0,\; b=2,\; f(x)=e^x$
Therefore $h=\large\frac{2-0}{n}=\frac{2}{n}$
Therefore $ \int \limits_0^2 e^x dx =\lim _{h \to 0} h \bigg[f(0)+f(h)+f(2h)+.........f(n-1)h \bigg]$
$=\lim _{h \to 0} h \bigg[e^0+e^h+e^2h+........e^{(n-1)h} \bigg]$
This is in geometric progression
Where $S_n=a \bigg[\large\frac{r^n-1}{r-1}\bigg]$
Here $r=e^h\; and\;a=e^0=1$
$\int \limits_0^2 e^x dx=\lim _{h \to 0} h \bigg[e^0\bigg\{\large\frac{(e^h)^n-1}{e^h-1}\bigg\}\bigg]$
$=\lim _{h \to 0} h \bigg[\Large\frac{e^{nh}-1}{e^h-1}\bigg]$
Since $h=\large\frac{2}{n} =>nh=2$
$=\lim _{h \to 0} h \bigg[\Large\frac{e^2-1}{e^n-1}\bigg]$
Multiply and divide the denominator by h
$=\lim _{h \to 0} h \bigg[\Large\frac{e^2-1}{\frac{(e^h-1)h}{h}}\bigg]=\frac{h}{h} \bigg[\Large\frac{e^2-1}{\frac{e^h-1}{h}}\bigg]$
But $\lim _{h \to 0}\Large\frac{e^h-1}{h}=1$
Hence $\int \limits_0^2 e^xdx=e^2-1$


answered Apr 17, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App