Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the following: $\int\limits_0^1\frac{dx}{e^x+e^{-x}}$

Can you answer this question?

1 Answer

0 votes
  • $\int \large\frac{dx}{a^2+x^2}=\frac{1}{a} \tan ^{-1} (\frac{x}{a})+c$
  • $\tan ^{-1}(1)=\large\frac{\pi}{4}$
  • $\tan ^{-1}(\infty)=\large\frac{\pi}{2}$
This can be written as
$ \large\int \limits_0^1 \frac{dx}{e^x+\frac{1}{e^x}}$
$ e^x+\large\frac{1}{e^x}=\large\frac{e^{2x}+1}{e^x}$
Therefore $I=\int _0^1 \large\frac{e^x}{e^{2x}+1}dx$
Put $e^x=t$
On differentiating with respect to t we get,
When we substitute for t the limits also changes
When $x=0, \;then\; t=e^x=e^0=1$
When $x=1, \;then\; t=e^1=e$
Hence on substituting this we get
$I=\int \limits_1^e \large\frac{1}{1+t^2}dx$
On integrating we get
$I=\bigg[\tan ^{-1} t\bigg]_1^e+c$
On applying limits we get
$=\tan ^{-1}e -\tan ^{-1}1$
But $ \tan ^{-1} 1$ is $\large\frac{\pi}{4}$
Therefore $I=\tan ^{-1}e-\large\frac{\pi}{4}$


answered Apr 17, 2013 by meena.p
edited Apr 18, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App