Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the following:$\int\limits_1^2\frac{dx}{\sqrt{(x-1)(2-x)}}$

Can you answer this question?

1 Answer

0 votes
  • $\int \limits_a^b \large\frac{dx}{\sqrt {a^2-x^2}}=\bigg[\sin ^{-1} (\frac{x}{a})+c \bigg]_a^b$
Step 1:
Consider $(x-1)(2-x)$
On expanding we get $-x^2+2x-2+x$
On completing the squares this can be written as
$-\bigg[(x-\large\frac{3}{2})^2-\frac{9}{4} +2 \bigg]$
$=-\bigg[(x-\large\frac{3}{2})^2-(\frac{1}{4}) \bigg]$
$=\bigg [(\large\frac{1}{2})^2-(x-\frac{3}{2})^2\bigg]$
Now substituting this in I we get,
$\int \limits_1^2 \large\frac{dx}{\sqrt {(1/2)^2-(x-3/2)^2}}$
Clearly this is of the form $\int \limits_a^b \large\frac{dx}{\sqrt {a^2-x^2}}$
$=\sin ^{-1}(x/a)+c$
Here $x=(x-3/2)\; and\; a=\large\frac{1}{2}$
Hence on integrating we get,
$\bigg[ \sin ^{-1} \bigg(\large\frac{x-3/2}{1/2} \bigg)\bigg]_1^2$
$=[\sin ^{-1} \large\frac {(2x-3)}{1} \bigg]_1^2$
Step 2:
On applying limits we get,
$I=[\sin ^{-1}(2 \times 2 -3)- \sin ^{-1} (2-3)]$
$=[\sin ^{-1}(1)-\sin ^{-1}(-1)]$
But $\sin ^{-1}(1)=\large\frac{\pi}{2}\;$$and\;\sin ^{-1}=-\pi/2$
Therefore $I=\large\frac{\pi}{2}+\frac{\pi}{2}=\pi$


answered Apr 18, 2013 by meena.p
edited Apr 18, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App