Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the following: $\int\limits_0^1\frac{xdx}{\sqrt{1+x^2}}$

Can you answer this question?

1 Answer

0 votes
  • $\int \limits_a^b x^n=\bigg[ \large \frac{x^{n+1}}{n+1}\bigg]_a^b$
Let $I=\large\int\limits_0^1\frac{xdx}{\sqrt{1+x^2}}$
Put $1+x^2=t$
On differentiating with respect to t we get,
$2xdx=dt =>xdx=dt/2$
When we substitute for t, the limits also change
When $x=0, \qquad 1+0=t=>t=1$
When $x=1, \qquad 1+1=t=>t=2$
On substituting this in I we get,
Therefore $I=\large\frac{1}{2} \int \limits^2_1 \frac{dt}{\sqrt t}$
$=\large\frac{1}{2} \int \limits _1^2 t^{\frac{-1}{2}}$$dt$
On integrating we get
$I= \large \frac{1}{2} \bigg[\frac{t ^{1/2}}{1/2} \bigg]_1^2$
$=\bigg[ \sqrt t \bigg]^2_1$
On applying limits we get
$I=\sqrt 2-1$


answered Apr 18, 2013 by meena.p
edited Apr 18, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App