logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Electromagnetic Waves
0 votes

The $rms$ value of the electric field of the light coming from the sun is $720\: N/C$. The average total energy density of the electromagnetic wave is

$\begin {array} {1 1} (a)\;3.3 \times 10^{-3} J/m^3 & \quad (b)\;4.58 \times 10^{-6}J/m^3 \\ (c)\;6.37 \times 10^{-9} J/m^3 & \quad (d)\;81.35 \times 10^{-12} J/m^3 \end {array}$

Can you answer this question?
 
 

1 Answer

0 votes
$ U = \large\frac{1}{2}$$ \in_0E^2_{rms}+ \large\frac{1}{(2\mu_0)}$$B^2_{rms}$
$= \large\frac{1}{2}$$ \in_o E^2_{rms} +\large\frac{ 1}{ (2\mu_o)}$$ \bigg(\large\frac{E^2_{rms}}{c^2 } \bigg)$
$= \large\frac{1}{2}$$ \in_o E^2_{rms} +\large\frac{ 1}{ (2\mu_o)} $$E^2_{rms}\in_0 \mu_0$
$ =\large\frac{ 1}{2} $$ \in_oE^2_{rms} + \large\frac{ 1}{2} $$ \in_oE^2_{rms} = \in_oE^2_{rms}$
$= (8.85 \times 10^{-12} ) \times (720)^2 = 4.58 \times 10^{-6} J/m^3$
Ans : (b)
answered Mar 3, 2014 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...