Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the following: $\int\limits_0^\pi x\sin x\cos^2xdx$

Can you answer this question?

1 Answer

0 votes
  • Method of integration by parts
  • $\int udv=uv-\int vdu$
  • $\sin ^3x=3\sin x-4 \sin ^3x$
Step 1:
Let $I=\int\limits_0^\pi x\sin x\;\cos^2xdx$
$\cos ^2 x=1-\sin ^2x$
Hence $\int\limits_0^\pi x\sin x(1-\sin ^2x)dx$
$=\int\limits_0^\pi (x\sin x-x \sin ^3 x) dx$
$=\int\limits_0^\pi x\sin x dx-\int\limits_0^\pi x\sin ^3x dx$
$\sin 3x=3 \sin x-4 \sin ^3 x$
Therefore $sin ^3 x=\large\frac{3 \sin x-\sin 3x}{4}$
$I=\int\limits_0^\pi x\sin x dx- \int\limits_0^\pi x \bigg[\large\frac{3 \sin x-\sin 3x}{4}\bigg]$$dx$
On simplifying we get,
$=\int\limits_0^\pi x\sin x dx-\frac{3}{4}\int\limits_0^\pi x\sin x +\frac{1}{4} \int\limits_0^\pi x\sin 3x dx$
$I=\large\frac{1}{4}$$\int\limits_0^\pi x\sin x dx+\frac{1}{4}\int\limits_0^\pi x\sin 3x dx$
Step 2:
Let us take as $I=\large\frac{1}{4}$$ [I_1+I_2]$
$I_1=\int\limits_0^\pi x\sin x dx$
This can be solved by the method of integration by parts
$\int udv=uv-\int vdu$
Here let $u=x,$ on differentiating with respect to x we get, $du=dx$
Let $dv=\sin x dx$ , on integrating we get $v=-\cos x$
Now substituting for u,v,du and dv we get,
$\int\limits_0^\pi x\sin x dx=x(-\cos x)-\int\limits_0^\pi -\cos x dx$
$=-(x \cos x)_0^{\pi}+\int\limits_0^\pi \cos x dx$
On integrating we get,
$I_1=-[x \cos x]_0^{\pi}+[\sin x]_0^{\pi}$
On applying limits we get
$I_1=-[\pi. \cos \pi -0]+[\sin \pi -\sin 0]$
$\sin \pi=0\;and\;\cos \pi=-1\;and\; \sin 0=0$
Therefore $I_1=-[\pi(-1)]+0$
Step 3:
Consider $I_2 =\int\limits_0^\pi x \sin 3x dx$
Similarly, let us solve this by the method of integration.
Let $u=x,$ on differentiating we get $du=dx$
Let $dv=\sin 3xdx$, on integrating we get $v=\frac{-1}{3} \cos 3x$
Now substituting for u,v,du and dv we get,
$\int\limits_0^\pi x\sin 3x dx=x(-\frac{1}{3}\cos x)_0^{\pi}+\frac{1}{3}\int\limits_0^\pi \cos 3x dx$
On integrating we get,
$=\large-\frac{1}{3}$$[x \cos 3x]_0^{\pi}+$$\large\frac{1}{3}[\frac{1}{3}$$\sin 3x]_0^{\pi}$
$=\large-\frac{1}{3}$$[x \cos 3x]_0^{\pi}+$$\large\frac{1}{9}$$[\sin 3x]_0^{\pi}$
On applying limits we get,
$I_2=-\frac{1}{3} [\pi \cos 3 \pi -0]+\frac{1}{9}[\sin 3 \pi-\sin 0]$
$\sin 3\pi=\sin 0=0$ and $\cos 3 \pi =-1$
Therefore $I_2 =\large-\frac{1}{3}$$[\pi(-1)]+0$
$=\large\frac{1}{3} \pi$
Step 4:
Therefore $ I=\large\frac{1}{4}$$[I_1+I_2]$
answered Apr 19, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App