Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the following: $\int\frac{x^2dx}{x^4-x^2-12}$

$\begin{array}{1 1}(A)\;\large\frac{1}{7}\log \large\frac{|x-2|}{|x+2|}-\frac{\sqrt 3}{7} \tan ^{-1} \bigg(\large\frac{x}{\sqrt 3}\bigg)+c \\ (B)\;\large\frac{1}{7} \log \large\frac{|x-2|}{|x+2|}+\frac{\sqrt 3}{7} \tan ^{-1} \bigg(\large\frac{x}{\sqrt 3}\bigg)+c \\ (C)\;\large\frac{1}{7} \log \large\frac{|x-2|}{|x+2|}+\frac{ 3}{\sqrt 7} \tan ^{-1} \bigg(\large\frac{x}{\sqrt 3}\bigg)+c \\ (D)\;\large\frac{1}{7} \log \large\frac{|x-2|}{|x+2|}-\frac{3}{\sqrt 7} \tan ^{-1} \bigg(\large\frac{x}{\sqrt 3}\bigg)+c\end{array} $

Can you answer this question?

1 Answer

0 votes
  • If a rational expression, whose degree of the numerator is greater then or equal to that of the denominator, it is said to be improper.
  • A rational expression of the from $\large\frac{x}{(x+a)(x-a)}$ can be resolved as $\large\frac{A}{(x+a)}+\frac{B}{(x-a)}$
Here $x^4-x^2-12$ can be factorized as $(x^2-4)(x^2+3)$
Hence $\large\frac{x^2}{x^4-x^2-12}$ can be resolved as
To evaluate the values for A,B,C and D put x=2
Therefore $ 4=28 B \qquad B=\frac{1}{7}$
Put $x=-2$
Therefore $ 4=-28A=> \qquad A=\large\frac{-1}{7}$
Put $x=0$
$=> -6A+6B-4D=0$
$-6 \times \large\frac{-1}{7} $$+ 6 \times \large\frac{1}{7}-$$4D=0$
Put $x=1$
$=>1=-4 \times \bigg(\large\frac{-1}{7}\bigg)$$+12 \bigg(\large\frac{1}{7}\bigg)-3C$
$(ie) \large\frac{4}{7}+\frac{12}{7}-$$3C=1$
$=>3C=\large\frac{9}{7}$ therefore $C=\large\frac{3}{7}$
Hence $A=-1/7,B=1/7\; and \;c=3/7$
Now substituting the value for A,B and C we get
Hence $I=\large\frac{-1}{7} \int \frac{1}{(x+2)}dx+\frac{1}{7} \int \frac{dx}{(x-2)}+\frac{3}{7}\int \frac{dx}{x^2+3}$
On integrating we get
$I=-\large\frac{1}{7}$$\log |x+2|+\large\frac{1}{7} $$\log|x-2|+\large\frac{3}{7} \times \frac{1}{\sqrt 3} $$\tan ^{-1} (\large\frac {x}{\sqrt 3})$
$=\large\frac{1}{7} $$\log \large\frac{|x-2|}{|x+2|}+\frac{\sqrt 3}{7} $$\tan ^{-1} \bigg(\large\frac{x}{\sqrt 3}\bigg)+c$
answered Apr 21, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App