Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the following:$\int\limits_0^{\Large\pi} \large \frac{x}{1+\sin x}$

Can you answer this question?

1 Answer

0 votes
  • $\int \limits_a^b f(x)dx=\int \limits_a^b f(a-x) dx$
  • $\int \sec^2 x dx=\tan x+c$
  • $\int \sec x \tan x dx=\sec x+c$
Step 1:
Let $I=\int\limits_0^{\Large\pi} \large\frac{x}{1+\sin x}$-----(1)
By applying the property $\int \limits_0^a f(x)dx=\int \limits_0^a f(a-x) dx$
we get
$I=\int\limits_0^{\Large\pi} \large\frac{\pi-x}{1+\sin (\pi-x)}$-----(2)
But $\sin (\pi-x) =\sin x$
Now adding equ (1) and equ(2)
$2I=\int\limits_0^{\Large\pi} \large\frac{x+\pi-x}{1+\sin x}$$dx$
$=\pi \int\limits_0^{\Large\pi} \large\frac{dx}{1+\sin x}$
Mutiply and divide by $1-\sin x$
$2I=\pi \int\limits_0^{\Large\pi} \large\frac{(1-\sin x)dx}{1-\sin ^2 x}$
$=\pi \int\limits_0^{\Large\pi} \large\frac{(1-\sin x)dx}{\cos ^2 x}$
Now splitting the terms
$2I=\pi \bigg[ \int\limits_0^{\Large\pi} \large\frac{1}{\cos ^2 x}$$dx- \int\limits_0^{\Large\pi} \large\frac{\sin x}{\cos ^2 x}$$dx\bigg]$
But $\large\frac{1}{\cos ^2 x}=$$\sec^2 x$ and
$\large\frac{\sin x}{\cos ^2 x}=$$\tan x.\sec x$
$2I=\pi \bigg[ \int\limits_0^{\Large\pi} \sec ^2 x $$dx- \int\limits_0^{\Large\pi} \sec x \tan x dx\bigg]$
Step 2:
On integrating we get
$2I= \pi \bigg\{ \bigg[\tan x\bigg]_0^{\pi}-\bigg[\sec x\bigg]_0^{\pi} \bigg\}$
On Applying limits we get,
$2I= \pi \bigg\{ \bigg[\tan \pi-\tan 0\bigg]-\bigg[\sec \pi-\sec 0\bigg] \bigg\}$
$\tan \pi=\tan 0\;and\; sec \pi=-1\; and \;sec 0=1$
Hence $2I=\pi \{0-[-1-1]\}$
$2I=2 \pi \qquad => I=\pi$


answered Apr 20, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App