Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the following:$\int\limits_{\Large \frac{\pi}{3}}^{\Large \frac{\pi}{2}}\large\frac{\sqrt{1+\cos x}}{(1-\cos x)^{\large\frac{5}{2}}}$

Can you answer this question?

1 Answer

0 votes
  • $1+\cos x=2 \cos ^2\large\frac{x}{2}$
  • $1-\cos x=2 \sin^2 \large\frac{x}{2}$
  • $ \int udv=uv-\int vdu$
  • $\log a +\log b=\log(ab)$
Step 1:
Let $ I=\int \limits_{\Large\frac{\pi}{2}}^{\Large\frac{\pi}{2}} \large \frac{\sqrt {1+\cos x}}{(1-\cos x)^{\Large\frac{5}{2}}}$
Since $1+\cos x=2 \cos ^2 \large\frac{x}{2}$
$\sqrt {1+\cos x}=\sqrt {2} \cos \large\frac{x}{2}$
Similarly $(1-\cos x)=2 \sin ^2 \large\frac{x}{2}$
$(1-\cos x)^{\Large\frac{5}{2}}=(2)^{\Large\frac{5}{2}}.\sin ^5 \large\frac{x}{2}$
$\qquad\qquad\;\;\;\;=4\sqrt 2.\sin ^5 \large\frac{x}{2}$
Hence $I=\int \limits_{\Large\frac{\pi}{3}}^{\Large\frac{\pi}{2}} \large\frac{\sqrt 2 \cos\Large\frac {x}{2}}{4 \sqrt 2 \sin ^5 \Large\frac{x}{2}}=\large\frac{1}{4} \int \limits_{\Large\frac{\pi}{3}}^{\Large\frac{\pi}{2}} \frac{\cos\Large\frac {x}{2}}{\sin ^5\Large\frac {x}{2}}$
Let $\sin \large\frac{x}{2}$$=t$ on differentiating with respect to x we get,
$\large\frac{1}{2}$$ \cos \large\frac{x}{2} $$dx=dt =>\cos \large\frac{x}{2}$$dx=2 dt$
When we substitute for x, the limits also change
As $x\to \large\frac{\pi}{3}$$;t\to \large\frac{1}{2}$$\quad[\sin \large\frac{\pi}{6}=\large\frac{1}{2}]$
As $x\to \large\frac{\pi}{2}$$;t\to \large\frac{1}{\sqrt 2}$$\quad[\sin \large\frac{\pi}{4}=\large\frac{1}{\sqrt 2}]$
Hence on substituting we get,
$I=\large\frac{1}{4}$$.2 \int \limits_{\Large\frac{1}{2}}^{\Large\frac{1}{\sqrt 2}} \large\frac{dt}{t^5}$
Step 2:
On integrating we get,
$I= \large\frac{1}{2} \bigg[\frac{\Large t^{-5+1}}{-5+1}\bigg]_{\Large\frac{1}{2}}^{\Large\frac{1}{\sqrt 2}}$
$=\large\frac{-1}{8} \bigg[\frac{1}{t^4}\bigg]_{\Large\frac{1}{2}}^{\Large\frac{1}{\sqrt 2}}$
On applying the limits we get,
$I=\large\frac{-1}{8}\bigg[\bigg(\frac{1}{\frac{1}{\sqrt 2}}\bigg)^4-\bigg(\frac{1} {\frac{1}{2}}\bigg)^4\bigg]$
$=\large\frac{-1}{8} $$[4-16]$
answered May 21, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App