Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the following: $\int\limits_0^1 x\;log(1+2x)dx$

Can you answer this question?

1 Answer

0 votes
  • $\int u dv=uv-\int v du$
  • If a rational expression $\large\frac{p(x)}{q(x)}$ where the degree of $p(x)$ is greater than $q(x)$,then it is said to be improper.
Step 1:
Let $I=\int_0^1 x\log(1+2x) dx.$
Clearly the integral is of the form $\int u dv.$
Hence this can be solved by the method of integration by parts
$\int u dv=uv-\int v du.$
Let $u=\log(1+2x)$.On differentiating with respect to x
$du=\large{\frac{1}{1+2x}}\normalsize .2dx.$
Let $dv=x dx$,hence on integrating we get
Now substituting for $u,v,du$ and $dv$ we get,
$\int_0^1 x\log(1+2x)dx=\bigg(\frac{x^2}{2}.\log(1+2x)\bigg)_0^1-\int_0^1\large\frac{x^2}{2}.\frac{2dx}{1+2x}$
Consider $\int_0^1\large\frac{x^2dx}{1+2x}$
The expression $\frac{x^2}{1+2x}$ is improper.To make this a proper rational expression let us divide
Hence $\large\frac{x^2}{1+2x}=\big(\frac{x^2}{4}-\frac{1}{4}\big)+\frac{1/4}{1+2x}$.
$\qquad\qquad\quad=\large \frac{x^2}{4}-\frac{1}{4}+\frac{1}{4(1+2x)}$
Step 2:
Hence $\int_0^1\large\frac{x^2}{1+2x}=\int_0^1\large\frac{x^2}{4}-\frac{1}{4}\int_0^1 dx+\frac{1}{4}\int_0^1\large\frac{dx}{1+2x}$.
On integrating we get,
$\Rightarrow \large\frac{x^3}{12}-\large\frac{1}{4}\normalsize x+\large\frac{1}{4}\normalsize \log(1+2x).$
$I=\begin{bmatrix}\large\frac{x^2}{2}\normalsize \log(1+2x)\end{bmatrix}_0^1-\begin{bmatrix}\large\frac{x^3}{12}-\frac{x}{4}+\frac{1}{8}\log (1+2x).\frac{1}{2}\end{bmatrix}_0^1$
On applying limits,
$\;\;=\begin{bmatrix}\large\frac{1}{2}\normalsize \log(1+2\times 1)\end{bmatrix}-\begin{bmatrix}\large\frac{1}{12}-\frac{1}{4}+\frac{1}{8}\log (1+2\times 1)-0-0+\frac{1}{8}(1+0)\end{bmatrix}$
$\;\;=(\large\frac{1}{2}\normalsize \log 3)-(\large\frac{1}{8}\normalsize \log 3)$
$\;\;=\large\frac{3}{8}\normalsize \log 3$
answered Apr 23, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App