Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

$ \int\tan^{-1}\sqrt x$ is equal to which of the following options:

$\begin{array}{1 1}(A)\;(x+1)\tan^{-1}\sqrt x-\sqrt x+C & (B)\;x\tan^{-1}\sqrt x-\sqrt x+C\\(C)\;\sqrt x-x\tan^{-1}\sqrt x+C & (D)\;\sqrt x-(x+1)\tan^{-1}\sqrt x+C\end{array}$
Can you answer this question?

1 Answer

0 votes
  • If $f(x)$ is substituted by $f(t)$ and if $f'(x)dx=f'(t)dt$,then $\int f(x)dx=\int f(t)dt.$
  • $\int\large\frac{dx}{x^2+a^2}=\frac{1}{a}$$\tan^{-1}\big(\large\frac{x}{a}\big)+c.$
Step 1:
Let $I=\int\tan^{-1}\sqrt x dx.$
Put $x=t^2$,then on differentiating with respect to $t$,we get $dx=2t.dt$
$I=\int \tan^{-1}t.2t \;dt.$
$\;\;=2\int t\tan^{-1}t.dt.$
Clearly this is of the form $\int u dv.$
Hence this can be solved by the method of integration by parts.
$\int udv=uv-\int vdu.$
Let $u=\tan^{-1}t$
On differentiating we get,
Let $dv=t dt$,on integrating we get,
Now substituting for $u,v,du$ and $dv$,we get
$2\int t.\tan^{-1}t dt=2[\large\frac{t^2}{2}$$\tan^{-1}(t)-\int\large\frac{t^2}{2}.\frac{1}{1+t^2}$$dt$]
Step 2:
Consider $\int\large \frac{t^2}{1+t^2}$$dt$
Add and subtract 1 to the numerator
$\;\;=\int \large\frac{t^2+1-1}{1+t^2}$$dt$.
On splitting the terms as,
$\;\;=\int dt-\int \large\frac{1}{1+t^2}$$dt$
Step 3:
Now integrating this we get,
Hence $I=2\begin{bmatrix}\large\frac{t^2}{2}\normalsize\tan^{-1}(t)-\large\frac{1}{2}\normalsize(t-\tan^{-1}(t)\end{bmatrix}+c.$
Combining the like terms,
Substituting for $t$ we get
$I=\tan^{-1}\sqrt x(x+1)-\sqrt x+c.$
Hence the correct option is A.
answered Apr 24, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App