Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

$\Large \int e^x\bigg(\frac{1-x}{1+x^2}\bigg)^2 \normalsize dx$ is equal to

$\begin{array}{1 1} (A)\;\frac{e^x}{1+x^2}+C & (B)\;\frac{-e^x}{1+x^2}+C\\(C)\;\frac{e^x}{(1+x^2)^2}+C & (D)\;\frac{-e^x}{(1+x^2)^2}+C \end{array} $

Can you answer this question?

1 Answer

0 votes
  • $\int e^x[f(x)+f'(x)]=e^xf(x)$
  • $\large\frac{d}{dx}\big(\frac{1}{x}\big)=\frac{-1}{x^2}$
Step 1:
Let $I=\int e^x\bigg(\large\frac{1-x}{1+x^2}\bigg)^2$$dx$
$\quad=\int e^x\bigg(\large\frac{1+x^2-2x}{(1+x^2)^2}\bigg)$$dx$
On splitting the terms,
$\quad=\int e^x\begin{bmatrix}\large\frac{1}{(1+x^2)}-\frac{2x}{(1+x^2)^2}\end{bmatrix}$$dx$
Step 2:
If $f(x)=\large\frac{1}{1+x^2}$ then $f'(x)=\large\frac{-2x}{(1+x^2)^2}$
Clearly this is of the form
$\int e^x[f(x)+f'(x)dx]=e^xf(x)+c$
Hence $I=\large\frac{e^x}{1+x^2}$$+c$.
Hence the correct option is A.
answered Apr 24, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App