Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

$\Large \int\limits_\frac{-\pi}{4}^\frac{\pi}{4}\frac{dx}{1+\cos2x}$ is equal to $(A)\;1\quad(B)\;2\quad(C)\;3\quad(D)\;4$

Can you answer this question?

1 Answer

0 votes
  • If $f(-x)=-f(x)$,then $f(x)$ is an odd function.
  • If $f(-x)=f(x)$,then $f(x)$ is an even function.
  • $1+\cos 2x=2\cos^2x$
  • $\int \sec^2xdx=\tan x+c$
  • $\int_{-a}^a f(x)dx=2\int_0^af(x)dx$ if $f(x)$ is an even function.
Step 1:
Let $I=\int_{\large\frac{-\pi}{4}}^{\large\frac{\pi}{4}}\large\frac{dx}{1+\cos 2x}$
If $f(x)$ is replaced by $f(-x)$ and if $f(-x)=f(x)$,then the function is said to be an even function.
Consider $1+\cos 2x$
Let $f(x)=1+\cos 2x$
$f(-x)=1+\cos( -2x)$
But $\cos(-x)=\cos x$
Hence $1+\cos(-2x)=1+\cos 2x$
Hence it is an even function.
Step 2:
$I=\int_{-a}^a f(x)dx=2\int_0^af(x)dx$ if $f(x)$ is an even function.
Applying this property,
$I=2\int_0^{\Large\frac{\pi}{4}}\large\frac{dx}{1+\cos 2x}$
Step 3:
On integrating we get,
$I=[\tan x]_0^{\Large\frac{\pi}{4}}$
$=\tan\large\frac{\pi}{4}\normalsize-\tan 0$
But $\tan\large\frac{\pi}{4}=1$ and $\tan 0=0.$
Hence I=1.
Hence the correct answer is (A).
answered Apr 24, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App