(9am to 6pm)

Ask Questions, Get Answers

Want help in doing your homework? We will solve it for you. Click to know more.
Home  >>  CBSE XII  >>  Math  >>  Integrals

$\int\limits_0^{\Large\frac{\pi}{2}}\cos x\;e^{\sin x} dx$ is equal to ____________.

1 Answer

Need homework help? Click here.
  • If $f(x)$ is substituted by $f(t)$,then $f'(x)dx=f'(t)dt$
  • Hence $\int f(x)dx=\int f(t)dt.$
  • $\int e^xdx=e^x+c$
Step 1:
Let $I=\int_0^{\Large\frac{\pi}{2}}\cos x e^{\sin x} dx.$
Put $\sin x=t$
$\cos xdx=dt.$
On differentiating with respect to t, we get as we substitute t, the limits also change.
When $x=0,t=\sin 0=0$
Step 2:
On integrating we get,
But $e^0=1$
Hence $I=e^1-1$
$\int_0^{\Large\frac{\pi}{2}}\cos x e^{\sin x} dx=e-1$
answered Apr 24, 2013 by sreemathi.v