Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class11  >>  Oscillations
0 votes

The system shown find the angular frequency (w) oscillation for S.H.M .

$(a)\;\sqrt{\large\frac{K_{2} K_{1}}{(K_{1}+K_{2})\;m}}\qquad(b)\;\sqrt{\large\frac{K_{2} K_{1}}{(4K_{2}+K_{1})\;m}}\qquad(c)\;\sqrt{\large\frac{K_{2} K_{1}}{( 2K_{2}+K_{1})\;m}}\qquad(d)\;None\;of\;these$

Can you answer this question?

1 Answer

0 votes
Answer : (b) $\;\sqrt{\large\frac{K_{2} K_{1}}{(4K_{2}+K_{1})\;m}}$
Explanation :
Let us strech the spring x
Let the spring $\;K_{2}\;$ move by $\;x_{2}\;$ and $\;K_{1}\;$ move by $\;x_{1}\;$ then the mass (m) moves $\;2x_{1}+x_{2}=x$
As the system is in equilibrium forces are same and let the force be T
$2T=K_{1} x_{1} \quad \; T=K_{2}x_{2}$
$x_{1}=\large\frac{2T}{K_{1}} \quad \; x_{2}=\large\frac{T}{K_{2}}$
Therefore , $2x_{1}+x_{2}=x$
$w=\sqrt{\large\frac{K_{2} K_{1}}{(4K_{2}+K_{1})\;m}}$
answered Mar 9, 2014 by yamini.v
edited Mar 9, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App