Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class11  >>  Oscillations
0 votes

Find the time period of S.H.M for the following spring - mass system

$(a)\;2 \pi \sqrt{m\;(\large\frac{1}{K_{1}}+\large\frac{4}{K_{2}}+\large\frac{1}{K_{3}}+\large\frac{4}{K_{4}}+\large\frac{1}{K_{5}})}\qquad(b)\;2 \pi \sqrt{m\;(\large\frac{1}{K_{1}}+\large\frac{1}{K_{2}}+\large\frac{1}{K_{3}}+\large\frac{1}{K_{4}}+\large\frac{1}{K_{5}})}\qquad(c)\;2 \pi \sqrt{m\;(K_{1}+4K_{2}+K_{3}+4K_{4}+K_{5})}\qquad(d)\;None\;of\;these$

Can you answer this question?

1 Answer

0 votes
Answer : (d) None of these
Explanation :
Let the springs $\;K_{1} , K_{2} , K_{3} , K_{4} ,K_{5}\;$ move by $\;x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5}\;.$
Then the mass 'm' moves by
As the system is in equilibrium , the tension in the springs be T
By considering the F.B.D's
$2T=K_{4}x_{4} \qquad \; therefore\; , x_{4}=\large\frac{2T}{K_{4}} \;$ similarly for $\;K_{2}\;$ also
and $\;K_{5}x_{5}=T\;,K_{1}x_{1}=T\;,K_{3}x_{3}=T$
Let $\;(\large\frac{1}{K_{1}}+\large\frac{4}{K_{2}}+\large\frac{1}{K_{3}}+\large\frac{4}{K_{4}}+\large\frac{1}{K_{5}})=f$
$T=\large\frac{x}{f} \qquad (T=ma)$
$T=\large\frac{2\pi}{w}=2 \pi \sqrt{mf}$
answered Mar 10, 2014 by yamini.v
edited Mar 10, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App