Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Integrals
0 votes

Find the area bounded by the curve $y=\sqrt x,x=2y+3$ in the first quadrant and $x$-axis.

$\begin{array}{1 1} \frac{29}{3}\;sq.units. \\ \frac{28}{3}\;sq.units. \\ \frac{27}{3}\;sq.units. \\ \frac{19}{3}\;sq.units\end{array} $

Can you answer this question?

1 Answer

0 votes
  • The area enclosed by the curve $y=f(x)$,the $x$-axis and the ordinates $x=a$ and $x=b$ is given by $\int_a^b ydx.$
  • $\int x^n dx=\large\frac{x^{n+1}}{n+1}$$+c$.
Step 1:
Given $y=\sqrt x$ and $x=2y+3$
Consider the curve $y=\sqrt x$.On squaring we get $y^2=x$.
Clearly this curve is a parabola,which is open rightwards,with vertex $(0,0)$.
Let us now obtain the points of intersection by solving the two equations.
$y^2=2y+3\Rightarrow y^2-2y-3=0$
On factorising we get,
(i.e) $y=3$ or $-1$ and $x=9$ or $1$
The points of intersection are $(9,3)$ and $(1,-1)$.
Step 2:
The required area is the shaded portion shown in the fig.
The area of the shaded portion $A=\int_1^9(y_2-y_1)dx.$
Where $y_2=\sqrt x$ and $y_1=\big(\large\frac{x-3}{2}\big)$
$A=\int_1^9\sqrt xdx-\int_1^9\big(\large\frac{x-3}{2}\big)$
On integrating we get,
$A=\begin{bmatrix}\large\frac{x^{\Large\frac{3}{2}}}{\Large\frac{3}{2}}\end{bmatrix}_1^9-\begin{bmatrix}\large\frac{x^2}{2}-\normalsize 3x\end{bmatrix}_1^9$
Step 3:
On applying limits we get,
$\;\;=\large\frac{2}{3}\begin{bmatrix}\normalsize 9^{\Large\frac{3}{2}}-1^{\Large\frac{3}{2}}\end{bmatrix}$$-\large\frac{1}{4}$$[9^2-1^2]+\large\frac{3}{2}$$[9-1]$
$\;\;=\large\frac{2}{3}$$[27-1]-\large\frac{1}{4}$$ [80]+\large\frac{3}{2}$$(8)$
Hence the required area is $\large\frac{28}{3}$sq.units.
answered May 8, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App