Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Integrals
0 votes

Draw a rough sketch of the region {(x,y):$y^2\leq 6ax $ and $x^2+y^2\leq 16a^2$}.Also find the area of the region sketched using method of integration.

Can you answer this question?

1 Answer

0 votes
  • The area enclosed by the curve $y=f(x)$,the $x$-axis and the ordinates $x=a$ and $x=b$ is given by $\int_a^b ydx.$
  • $\int\sqrt{a^2-x^2}dx=\large\frac{x}{2}$$\sqrt{a^2-x^2}+\large\frac{a^2}{2}$$\sin^{-1}\big(\Large\frac{x}{a}\big)$$+c$
Step 1:
Given:{(x,y):$y^2\leq 6ax $ and $x^2+y^2\leq 16a^2$}
Consider $x^2+y^2\leq 16a^2$ or $x^2+y^2=16a^2$
Clearly this curve represents a circle with centre (0,0) and radius $4a$
Consider $y^2\leq 6ax$ or $y^2=6ax$
Clearly this represents a parabola whose vertex is (0,0) and open rightwards.
The region whose area is required is the shaded portion shown in the fig.
Step 2:
Let us find the point of intersection between the two curves.
$y^2=16a^2-x^2$ and $y^2=16ax$
$16a^2-x^2=6ax\Rightarrow y^2=6ax$
$16a^2-x^2=6ax\Rightarrow x^2+6ax-16a^2=0$
On factorizing we get,
$\Rightarrow x=-8a$ and $2a$
Since $x=-8a\Rightarrow y^2=6a(-8a)=$ -ve.
This is inadmirrable,since the value of $y$ are imaginary.
Hence $x=(2a,y)$ and $(2a,-y)$ are the points of intersection.
Step 3:
Now the area of the required region $A=2\int_0^{2a}(y_2+y_1)dx$
Here $y_2=\sqrt{6ax}.$ and $y_1=\sqrt{16a^2-x^2}$
Since the area is enclosed in the I and IV quadrants,
Area=$2\times$ (Area of OAB)
Step 4:
On integrating we get,
$A=2.\sqrt{6a}\begin{bmatrix}\large\frac{x^{\Large\frac{3}{2}}}{\Large\frac{3}{2}}\end{bmatrix}$+$2\begin{bmatrix}\large\frac{x}{2}\normalsize\sqrt{16a^2-x^2}+\large\frac{16a^2}{2}\normalsize \sin^{-1}\big(\large\frac{x}{4a}\big)\end{bmatrix}_{2a}^{4a}$
On applying limits we get,
$A=2\times \sqrt 2\sqrt 3 a\times\large\frac{2}{3}[\normalsize (2a)^{\Large\frac{3}{2}}-0]+2\begin{bmatrix}\large\frac{4a}{2}\normalsize\sqrt{16a^2-16a^2}+8a^2 \sin^{-1}\big(\large\frac{4a}{4a}\big)\end{bmatrix}$-2$\begin{bmatrix}\large\frac{2a}{2}\normalsize\sqrt{16a^2-4a^2}+\large\frac{16a^2}{2}\normalsize \sin^{-1}\big(\large\frac{x}{4a}\big)\end{bmatrix}$
$\;\;=\large\frac{4\sqrt 2\sqrt 3 a}{3}[\normalsize 2\sqrt 2\times a\sqrt a]+[16a^2\sin^{-1}(1)]-2a(2\sqrt 3a)-16a^2\sin^{-1}\big(\large\frac{1}{2}\big)$
$\;\;=\large\frac{16\sqrt{3}a^2}{3}$$+16a^2\large\frac{\pi}{2}$$-4a^2\sqrt 3-16a^2\large\frac{\pi}{6}$
$\;\;=\large\frac{16\sqrt 3 a^2-12a^2\sqrt 3}{3}+$$8a^2(\pi-\large\frac{\pi}{3})$
$\;\;=\large\frac{4\sqrt 3a^2}{3}+$$8a^2\big(\large\frac{2\pi}{3}\big)=\large\frac{4}{3}$$a^2(\sqrt 3+4\pi)$
Hence the required area is $\large\frac{4}{3}$$a^2(\sqrt 3+4\pi)$
answered May 6, 2013 by sreemathi.v
edited May 7, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App