Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Integrals
0 votes

Find the area bounded by the curve $y=2\cos x$ and the $x$-axis from $x=0$ to x=2$\pi$.

Can you answer this question?

1 Answer

0 votes
  • The area enclosed by the curve $y=f(x)$,the $x$-axis and the ordinates $x=a$ and $x=b$ is given by $\int_a^b ydx.$
  • $\int \sin xdx=-\cos x+c$
  • $\int \cos xdx=\sin x+c.$
Step :1
Given $y=2\cos x$ and $x=0$ to $x=2\pi$
It is clear from the graph that the required area is the three regions which are shaded.
Clearly the curve ranges between $0$ to $\large\frac{\pi}{2}$ in the I region,$\large\frac{\pi}{2}$ to $\large\frac{3\pi}{2}$ in the second region which is in the negative side of $y$-axis,and $\large\frac{3\pi}{2}$ to $2\pi$ in the III region.
Hence the area of the shaded region is $A=\int_0^{\Large\frac{\pi}{2}}y_1dx+\int_{\Large\frac{\pi}{2}}^{\Large\frac{3\pi}{2}}(-y_2)dx+\int_{\Large\frac{3\pi}{2}}^{2\pi}y_3dx.$
$A=2\int_0^{\Large\frac{\pi}{2}}\cos xdx-2\int_{\Large\frac{\pi}{2}}^{\Large\frac{3\pi}{2}}\cos xdx+2\int_{\Large\frac{3\pi}{2}}^{2\pi}\cos xdx.$
Step 2:
On integrating we get,
$A=2\begin{bmatrix}\begin{bmatrix}\sin x\end{bmatrix}_0^{\Large\frac{\pi}{2}}-\begin{bmatrix}\sin x\end{bmatrix}_{\large\frac{\pi}{2}}^{\Large\frac{3\pi}{2}}+\begin{bmatrix}\sin x\end{bmatrix}_{\Large\frac{3\pi}{2}}^{2\pi}\end{bmatrix}$
Applying the limits we get,
$A=2\begin{bmatrix}(\sin\large\frac{\pi}{2}-\normalsize\sin 0)-(\sin\large\frac{3\pi}{2}-\sin\large\frac{\pi}{2})+\normalsize(\sin 2\pi-\sin\large\frac{3\pi}{2})\end{bmatrix}$
We know $\sin 0=\sin2\pi=0$ and $\sin\large\frac{\pi}{2}$$=1$ and $\sin\large\frac{3\pi}{2}$$=-1$
Hence $A=2[(1-0)-(-1-1)+(0-(-1))]$
Hence the required area is $8$sq.units.
answered May 6, 2013 by sreemathi.v
edited Dec 22, 2013 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App