logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class11  >>  Oscillations
0 votes

A rid of length l and mass is fixed at point O as shown in the figure and it is free to rotate about that point . Find the frequency (w) for small angular oscillation

$(a)\;\sqrt{\large\frac{3g}{2L}}\qquad(b)\;\sqrt{\large\frac{g}{L}}\qquad(c)\;\sqrt{\large\frac{4g}{5L}}\qquad(d)\;\sqrt{\large\frac{3g}{L}}$

Can you answer this question?
 
 

1 Answer

0 votes
Answer : (a) $\;\sqrt{\large\frac{3g}{2L}}$
Explanation :
As it is displaced by small angle $\;\theta$
Taking torque about O
$mgsin \theta\times \large\frac{L}{2}=I \alpha$
$mgsin \theta\times \large\frac{L}{2}=\large\frac{mL^3}{3} \alpha \quad $ for small values of $\;\theta \; sin \theta \approx \theta$
$mg \theta \times \large\frac{L}{2}=\large\frac{L}{3}\times \alpha$
$\alpha=\large\frac{3g}{2L}\;\theta$
$w=\sqrt{\large\frac{3g}{2L}}$
answered Mar 11, 2014 by yamini.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...