Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Integrals
0 votes

The area of the region bounded by the ellipse $\large\frac{x^2}{25}+\frac{y^2}{16}=1$ is \begin{array}{1 1}(A)\;2 \pi sq.units & (B)\;20{\pi}^2 sq.units\\(C)\;16{\pi}^2 sq.units & (D)\;25\pi sq.units \end{array}

Can you answer this question?

1 Answer

0 votes
  • The area enclosed by the curve $y=f(x)$,the $x$-axis and the ordinates $x=a$ and $x=b$ is given by $\int_a^b ydx.$
  • $\int\sqrt{a^2-x^2}dx=\large\frac{x}{2}$$\sqrt{a^2-x^2}+\large\frac{a^2}{2}$$\sin^{-1}\big(\large\frac{x}{a}\big)$$+c$
Step 1:
Given curve is an ellipse $\large\frac{x^2}{25}+\frac{y^2}{16}$$=1$.
The equation of the ellipse can be rewritten as $\large\frac{y^2}{16}$$=1-\large\frac{x^2}{25}=\frac{25-x^2}{25}$
$\Rightarrow y^2=\large\frac{16}{25}$$(25-x^2)\Rightarrow y=\large\frac{4}{5}$$\sqrt{25-x^2}$
Clearly the ellipse is along the $x$-axis as the major axis and is bounded between $x=5$ and $x=-5$.
Hence the required area is the shaded portion shown in the fig.
Step 2:
Area of the shaded portion is $A=4\times \int_0^5\large\frac{4}{5}$$\sqrt{25-x^2}dx.$
We know $\int\sqrt{a^2-x^2}dx=\large\frac{x}{2}$$\sqrt{a^2-x^2}+\large\frac{a^2}{2}$$\sin^{-1}\big(\large\frac{x}{a}\big)$
On integrating we get,
$A=\large\frac{16}{5}\begin{bmatrix}\large\frac{x}{2}\normalsize\sqrt{25-x^2}+\large\frac{25}{2}\normalsize \sin^{-1}\big(\large\frac{x}{a}\big)\end{bmatrix}_0^5$
Step 3:
On applying limits we get,
$\;\;\;=\large\frac{16}{5}\begin{bmatrix}\large\frac{5}{2}\normalsize \sqrt{25-25}+\large\frac{25}{2}\normalsize \sin^{-1}\big(\frac{5}{5}\big)-\large\frac{0}{2}\normalsize\sqrt{25-0}+\large\frac{25}{2}\normalsize\sin^{-1}(0)\end{bmatrix}$
On simplifying we get,
But $\sin^{-1}(1)=\large\frac{\pi}{2}$
Hence $A=\large\frac{16}{5}\times\large\frac{25}{2}\times\frac{\pi}{2}$=$20\pi$ sq.units.
Hence the correct option is A.
answered May 7, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App