logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Find a unit vector in the direction of $\overrightarrow{PQ},$where $P$ and $Q$ have co-ordinates $(5,0,8)$ and $(3,3,2)$,respectively.

$\begin{array}{1 1} (A)\;\Large\frac{2\hat i+3\hat j+6\hat k}{7} \\ (B)\;\Large\frac{-2\hat i+3\hat j-6\hat k}{7} \\(C)\;\Large\frac{-2\hat i+3\hat j-6\hat k}{49} \\(D)\;\Large\frac{-2\hat i-3\hat j+6\hat k}{7} \end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Unit vector in the direction of $\overrightarrow a=\large\frac{\overrightarrow a}{|\overrightarrow a|}$
  • $\overrightarrow{PQ}=\overrightarrow{OQ}-\overrightarrow{OP}$
  • $|x \hat i+y \hat j+2 \hat k|=\sqrt {x^2+y^2+z^2}$
Given $P(5,0,8)\; and\; Q(3,3,2)$
Let $ \overrightarrow{OP}=5\hat i+8\hat k\:and\:\overrightarrow{OQ}=3\hat i+3\hat j+2\hat k$
We know that $ \overrightarrow{PQ}=\overrightarrow{OQ}-\overrightarrow{OP}$
$\overrightarrow{PQ}=(3\hat i+3\hat j+2\hat k)-(5\hat i+8\hat k)$
$\qquad =-2\hat i+3\hat j-6\hat k$
Magnitude of $PQ$ is
$|\overrightarrow{PQ}|=\sqrt{(-2)^2+3^2+(-6)^2}$
$\quad\quad =\sqrt {4+9+36}$
$\quad\quad =\sqrt {49}=7$
Unit vector in the direction of $\hat{PQ}=\frac{\overrightarrow{PQ}}{|\overrightarrow{PQ}|}$
$ \qquad =\Large\frac{-2\hat i+3\hat j-6\hat k}{7} $
answered May 27, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...