Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Find a unit vector in the direction of $\overrightarrow{PQ},$where $P$ and $Q$ have co-ordinates $(5,0,8)$ and $(3,3,2)$,respectively.

$\begin{array}{1 1} (A)\;\Large\frac{2\hat i+3\hat j+6\hat k}{7} \\ (B)\;\Large\frac{-2\hat i+3\hat j-6\hat k}{7} \\(C)\;\Large\frac{-2\hat i+3\hat j-6\hat k}{49} \\(D)\;\Large\frac{-2\hat i-3\hat j+6\hat k}{7} \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Unit vector in the direction of $\overrightarrow a=\large\frac{\overrightarrow a}{|\overrightarrow a|}$
  • $\overrightarrow{PQ}=\overrightarrow{OQ}-\overrightarrow{OP}$
  • $|x \hat i+y \hat j+2 \hat k|=\sqrt {x^2+y^2+z^2}$
Given $P(5,0,8)\; and\; Q(3,3,2)$
Let $ \overrightarrow{OP}=5\hat i+8\hat k\:and\:\overrightarrow{OQ}=3\hat i+3\hat j+2\hat k$
We know that $ \overrightarrow{PQ}=\overrightarrow{OQ}-\overrightarrow{OP}$
$\overrightarrow{PQ}=(3\hat i+3\hat j+2\hat k)-(5\hat i+8\hat k)$
$\qquad =-2\hat i+3\hat j-6\hat k$
Magnitude of $PQ$ is
$\quad\quad =\sqrt {4+9+36}$
$\quad\quad =\sqrt {49}=7$
Unit vector in the direction of $\hat{PQ}=\frac{\overrightarrow{PQ}}{|\overrightarrow{PQ}|}$
$ \qquad =\Large\frac{-2\hat i+3\hat j-6\hat k}{7} $
answered May 27, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App