Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Using vectors,find the value of k such that the points $(k,-10,3),(1,-1,3)$ and $(3,5.3)$ are collinear.

$\begin{array}{1 1}(A)\;k=-1 \\ (B)\;k=-2 \\(C)\;k=2 \\ (D)\;k=0\end{array} $

Can you answer this question?

1 Answer

0 votes
  • If two vector $\overrightarrow{a}$ and $\overrightarrow{b}$ are collinear, then $\overrightarrow{a}=\lambda \overrightarrow {b}$
Step 1:
Given $A(k, -10,3), B(1,-1,3), C(3,5,3)$
Let $ \overrightarrow{OA}=(k\hat i-10\hat j+3\hat k)$, $\overrightarrow{OB}=(\hat i-\hat j+3\hat k)\;and\;\overrightarrow{OC}=(3\hat i+5\hat j+3\hat k)$
Let us first determine $\overrightarrow{AB}$
We know that $ \overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}$
$=(\hat i-\hat j+3\hat j)-(k\hat i-10\hat j+3\hat k)$
$=(1-k)\hat i+\hat j(10-1)$
$=(1-k)\hat i+9\hat j$
Let us determine $\overrightarrow{BC}$
$=(3\hat i+5\hat j+3\hat k)-(\hat i-\hat j+3\hat j)$
$=2 \hat i+6 \hat j$
Step 2:
Since the points A,B and C are collinear $ \overrightarrow{AB}=\lambda \overrightarrow{BC}$
=>$\hat i(1-k)+9 \hat j=\lambda (2 \hat i+6 \hat j)$
(ie)$\hat i(1-k)+9 \hat j-\lambda (2 \hat i+6 \hat j)=0$
But $\hat i$ and $\hat j$ are non-colilinear hence
$(1-k-2 \lambda)=0$ and $9-6 \lambda=0$
Consider $ 9-6 \lambda=0$
$=> \lambda =\large\frac{9}{6}=\frac{3}{2}$
Substituting the value of $\lambda$ we get,
$\qquad k=-2$
answered May 27, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App