Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

A vector $\overrightarrow{r}$ is inclined at equal angles to the three axes.If the magnitude of $\overrightarrow{r}$ is $2\sqrt 3$ units,find $\overrightarrow{r}.$

$\begin{array}{1 1} (A)\;2\hat i-2\hat j+2\hat k \\ (B)\;2(\pm \hat i\pm \hat j\pm \hat k) \\(C)\;4(\pm \hat i\pm \hat j\pm \hat k) \\ (D)\;2(\pm \hat i+ \hat j+ \hat k)\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $\overrightarrow{r}=|\overrightarrow{r}|(l \hat i+m \hat j+ n \hat k)$
  • Sum of the square of the direction cosines is one
Given $ |\overrightarrow r|=2 \sqrt 3 units $
Also $ |\overrightarrow r| $ is equally inclined with $OX,Oy$ and $OZ$
Hence this direction ratios are equal
Let the direction ratios be l,m and n
Since the direction ration are equal
$ l=m=n$
=>$ \cos \alpha=\cos \beta=\cos \gamma$
We know tha sum of squares of the dirction cosines is one
Therefore $l^2+m^2+n^2=1$
$=>3l^2=1$ therefore $ l=\pm \large\frac{1}{\sqrt 3}$
Hence the direction cosines are $\pm \large\frac{1}{\sqrt 3},$$\pm \large\frac{1}{\sqrt 3},$$\pm \large\frac{1}{\sqrt 3}$
It is given $ |\overrightarrow r|=2 \sqrt 3 units $
Therefore $ \overrightarrow r=|\overrightarrow r| (l \hat i+m \hat j+n \hat k)$
$=2 \sqrt {3}\bigg(\pm \large\frac{1}{\sqrt 3} \hat i$$\pm \large\frac{1}{\sqrt 3} \hat j$$\pm \large\frac{1}{\sqrt 3}\hat k\bigg)$
$=(\pm 2 \hat i\pm2 \hat j\pm 2 \hat k)$
$=2(\pm \hat i\pm \hat j\pm \hat k)$
answered May 27, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App