logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Ad
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class11  >>  Thermodynamics
0 votes

An arbitrary shaped object is rotated about any axis of rotation $\;'w_{0} '$ . If the temperature is increased , then the new value of angular speed $\;w^{'}\;$ depends upon -

$(a)\;the\;dimensions\;of\;the\;object\qquad(b)\;the\;position\;of\;the\;axis\;of\;rotation\qquad(c)\;Coefficient\;of\;linear\;expansion\;of\;material\qquad(d)\;All\;of\;these$

Can you answer this question?
 
 

1 Answer

0 votes
Answer : Coefficient of linear expansion of material
Explanation :
Suppose the moment of inertia of object is $\;I_{0}\;$ & linear dimension is $\;'l_{0}'\;$ . Since the angular momentum of the system is conserved
$I_{0}w_{0}=I^{'}w^{'}$
Since $\;I_{0} \alpha l_{0}^2\;$ and $\;l=l_{0}(1+\alpha \bigtriangleup t)$
$\large\frac{I^{'}}{I_{0}}$$=(2 \alpha \bigtriangleup t +1)$
Therefore , $\;w^{'}=\large\frac{w_{0}}{(1+2 \alpha \bigtriangleup t)}$
answered Mar 13, 2014 by yamini.v
edited Mar 25, 2014 by balaji.thirumalai
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...