Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

FInd a vector of magnitude 6 ,which is perpendicular to both the vectors $2\hat i-\hat j+2\hat k$ and $4\hat i-\hat j+3\hat k.$

$\begin{array}{1 1} (A)\;2(-\hat i+\hat j+3\hat k) \\(B)\;-\hat i-2\hat j+2\hat k \\ (C)\;-2\hat i+4\hat j+4\hat k \\ (D)\;2(-\hat i-\hat j-3\hat k) \end{array} $

Can you answer this question?

1 Answer

0 votes
  • A unit vector perpendicular to two vectors is given by $ \hat n =\large \frac{\overrightarrow a \times \overrightarrow b}{|\overrightarrow a \times \overrightarrow b|}$
Let $\overrightarrow a= 2\hat i - \hat j + 2\hat k$ and $\overrightarrow b=4\hat i -\hat j + 3\hat k $
Let us first determine $\overrightarrow a\times\overrightarrow b$
$\overrightarrow a \times \overrightarrow b=\begin{vmatrix} \hat i & \hat j & \hat k \\ 2 & -1 & 2 \\ 4 & -1 & 3 \end{vmatrix}$
On expanding we get,
$ =\hat i(-3+2)-\hat j(6-8)+\hat k(-2+4)$
$ = -\hat i + 2\hat j + 2\hat k$
$|\overrightarrow a\times\overrightarrow b|=\sqrt{(-1^2+2^2+2^2)}=\sqrt {1+4+4}=3$
Hence the unit vector perpendicular to the given vectors of magnitude $6$ is $3$
$= \large\frac{6}{3} $$\bigg( -\hat i + 2\hat j + 6\hat k \bigg)$
$=2(-\hat i+\hat j+3\hat k) $
answered May 27, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App