Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

If $A,B,C,D$ are the points with position vectors $\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k},2\overrightarrow{i}+\overrightarrow{j}+3\overrightarrow{k},2\overrightarrow{i}-3\overrightarrow{k},3\overrightarrow{i}+2\overrightarrow{i}+\overrightarrow{k},$ respectively ,find the projection of $\overrightarrow{AB}$ along $\overrightarrow{CD}.$

$\begin{array}{1 1} 3 \\ \sqrt 3 \\ 9 \\ 27 \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Projection of $ \overrightarrow a \: along \: \overrightarrow b\: is \: \large\frac{\overrightarrow a.\overrightarrow b}{|\overrightarrow b|} $
Given $\overrightarrow{OA}=\hat i+\hat j+\hat k$, $\overrightarrow{OB}=2\hat i+\hat j+3\hat k$, $\overrightarrow{OC}=2\hat i-3\hat k$ and $\overrightarrow{OD}=3\hat i+2\hat j+\hat k$
Let us determine $ \overrightarrow{AB}$ and $ \overrightarrow{CD}$
$ \overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}$
$\qquad=(2\hat i+\hat j+3\hat k)-(\hat i+\hat j+\hat k)$
$\qquad=\hat i+2\hat k$
$ \overrightarrow{CD}=\overrightarrow{OD}-\overrightarrow{OC}$
$\qquad=(3\hat i+2\hat j+\hat k)-(2\hat i-3\hat k)$
$\qquad=\hat i+2\hat j+ 4 \hat k$
Projection of $ \overrightarrow {AB} $ along $ \overrightarrow {CD}$ is
$\large\frac{\overrightarrow {AB}.\overrightarrow {CD}}{|\overrightarrow {CD}|} =\large\frac{(\hat i+2 \hat k).(\hat i+2 \hat j +4 \hat k)}{\sqrt {1^2+2^2+(-2)^2}}$
$=\large\frac{1+8}{\sqrt {1+4+4}}=\frac{9}{3}$
Hence the projection of $ \overrightarrow{AB} \: along \: \overrightarrow{CD}$ is 3
answered May 28, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App