logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Using vectors,find the area of the triangle ABC with vertices $A(1,2,3),B(2,-1,4)$ and $C(4,5,-1).$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Area of a triangle =$ \large\frac{1}{2}$$ | \overrightarrow{AB} \times \overrightarrow{BC}| $
Given $\overrightarrow {OA}=\hat i+2\hat j+3\hat k$, $\overrightarrow {OB}=2\hat i-\hat j+4\hat k$, and$\overrightarrow {OC}=4\hat i+5\hat j-\hat k$,
Area of a triangle is given by =$ \large\frac{1}{2}$$ | \overrightarrow{AB} \times \overrightarrow{BC}| $
Now let us determine $\overrightarrow{AB}$
$ \overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}$
$\qquad=(2\hat i-\hat j+4\hat k)-(\hat i+2\hat j+3\hat k)$
$\qquad=\hat i-3\hat j+\hat k$
Now let us determine $\overrightarrow{AC}$
$ \overrightarrow{AC}=\overrightarrow{OC}-\overrightarrow{OA}$
$\qquad=(4\hat i+5\hat j - \hat k)-(\hat i+2\hat j+3\hat k)$
$\qquad=3\hat i+3\hat j-4\hat k$
Now let us determine $\overrightarrow{AB} \times \overrightarrow{AC}$
$ \overrightarrow{AB} \times \overrightarrow{AC}=\begin{vmatrix} \hat i & \hat j & \hat k \\ 1 & -3 & 1 \\ 3 & 3 & -4 \end{vmatrix}$
$\qquad\qquad =\hat i(12-3)-\hat j(-4-3)+\hat k(3+9)$
$\qquad\qquad=9\hat i+7\hat j+12\hat k$
$ | \overrightarrow{AB} \times \overrightarrow{AC}| =\sqrt{9^2+7^2+12^2}$
$\quad\qquad\qquad=\sqrt{81+49+144}$
$\quad\qquad\qquad=\sqrt{274}$
Hence the area of the triangle is $\large \frac{\sqrt{274}}{2}$ sq. units
answered May 28, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...