Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Magnetism and Matter
0 votes

Suppose a magnet is suspended by a vertical string, attached to its middle point. Given that the horizontal component of earth's magnetic field is $25\;\mu T$ and the vertical component of of earth's magnetic field is $40\;\mu T$, find the position in which the magnet can stay in equilibrium.

$\begin{array}{1 1} (A) \theta = \sin^{-1} \large (\frac{8}{5}) \\(B) \theta = \cos^{-1} \large (\frac{8}{5}) \\(C) \theta = \tan^{-1} \large (\frac{8}{5}) \\ (D) \theta = \tan^{-1} \large (\frac{5}{8}) \\ \end{array}$

Can you answer this question?

1 Answer

0 votes
The vertical component of the earth's magnetic field is given by $B_v = B \sin \theta I$ and the horizontal component by $B_h = B \cos \theta I$
$\Rightarrow \large\frac{B_v}{B_h} = \large\frac{B \sin \theta I}{B \cos \theta I} $$ \rightarrow \tan \theta =\large\frac{B_v}{B_h}$
$\Rightarrow \tan \theta = \large\frac{40}{25} $$ =\large\frac{8}{5}$$ \rightarrow \theta = tan^{-1} \large (\frac{8}{5})$ $ \rightarrow \theta = 58 ^{\circ}$
This is the angle that the magnetic field makes with Earth's magnetic meredian. For any magnet to be stable in equilibrium, it needs to stay in this direction, thus making this angle with the horizontal plane.
answered Mar 14, 2014 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App