logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Ad
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class11  >>  Thermodynamics
0 votes

Rods of equal length & equal cross - section are arranged as shown - The thermal conductivity of the rods are written correspondingly . The equivalent thermal conductivity of the system is -

$(a)\;\large\frac{20}{3} K\qquad(b)\;\large\frac{10}{3} K\qquad(c)\;5K\qquad(d)\;None\;of\;these$

Can you answer this question?
 
 

1 Answer

0 votes
Answer : $\;\large\frac{20}{3} K$
Explanation :
For series connection ---
$K_{s}=\large\frac{K_{1}K_{2}}{K_{1}+K_{2}} \quad $ { For equal lengths & cross - section }
For parallel combination ---
$K_{p}=K_{1}+K_{2} \quad $ { For equal lengths & cross - section }
Therefore , The system reduces to
Now , $\; \bigtriangleup Q= \bigtriangleup Q_{1} + \bigtriangleup Q_{2} + \bigtriangleup Q_{3}$
$\large\frac{K_{eq} A (3T_{0})}{4L}=\large\frac{KAT_{0}}{L}+\large\frac{(3K)(2T_{0})}{2L}+\large\frac{KAT_{0}}{L}$
$K_{eq}(\large\frac{3}{4})=K + 3K +k$
$K_{eq}=\large\frac{20K}{3}$
answered Mar 15, 2014 by yamini.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...