Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

The position vector of the point which divides the join of points $2\overrightarrow{a}-3\overrightarrow{b}$ and $\overrightarrow{a}+\overrightarrow{b}$ in the ratio 3:1 is

Can you answer this question?

1 Answer

0 votes
  • $\overrightarrow r=\large\frac{m \overrightarrow b+ n \overrightarrow a}{m+n}$ where $\overrightarrow r$ divides $\overrightarrow {AB}$ internals in the ratio $m:n$
Let $\overrightarrow {OP}= 2 \overrightarrow a-3 \overrightarrow b$ and $\overrightarrow {OQ}= \overrightarrow a+ \overrightarrow b$
Given ratio is $3:1$
Let R be the point which divides line PQ in the ratio $3:1$
We know the position vector which divides the join of the points P and Q, whose position vector are $\overrightarrow {OP} $ and $\overrightarrow {OQ}$ in the ratio $m:n$ is given by
$\overrightarrow {OR}=\large\frac{m \overrightarrow {OQ}+n \overrightarrow {OP}}{m+n}$
Here $\overrightarrow {OP}=2 \overrightarrow a-3 \overrightarrow b$
$\qquad \overrightarrow {OQ}=\overrightarrow a+\overrightarrow b$
$\qquad m=3$ and $n=1$
Therefore $\overrightarrow {OR}=\large\frac{3(\overrightarrow a+\overrightarrow b)+1(2 \overrightarrow a-3 \overrightarrow b)}{3+1}$
$\qquad\qquad=\large\frac{5 \overrightarrow a}{4}$
Hence the correct option is $D$
answered May 31, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App