Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Find the value of $\lambda$ such that the vectors $\overrightarrow{a}=2\hat i+\lambda\hat j+\hat k$ and $\overrightarrow{b}=\hat i+2\hat j+3\hat k$ are orthogonal

Can you answer this question?

1 Answer

0 votes
  • If $\overrightarrow a \perp \overrightarrow b,$ then $\overrightarrow a.\overrightarrow b=0$
Let $\overrightarrow a=2\hat i+\lambda\hat j+\hat k\:and\:\overrightarrow b=\hat i+2\hat j+3\hat k$
It is given $\overrightarrow a$ and $\overrightarrow b=0$ are orthogonal (ie) $\overrightarrow a \perp \overrightarrow b,$
$=>\overrightarrow a.\overrightarrow b=0$
Now substituting the values,
$=>(2\hat i+\lambda\hat j+\hat k).(\hat i+2\hat j+3\hat k)=0$
On simplifying we get,
Hence the correct option is $D$
answered May 28, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App