$\begin {array} {1 1} (A)\;860^{\circ}C & \quad (B)\;833\: K \\ (C)\;560^{\circ}C & \quad (D)\;860 \: K \end {array}$

Thermodynamics

Want to ask us a question? Click here

Browse Questions

Thermodynamics

Ad |

0 votes

0 votes

For $n$ mole of gas, we have $PV = nRT$

Here, $P = 10^6\: N/m^2 , \: V = 10L = 10^{-2}m^3 \: and \: T = 27^{\circ}C = 300 \: K$

So, $n = \large\frac{PV}{RT+} = \large\frac{10^6 \times 10^{-2}}{(8.31 \times 300)}$$ = 4$

For â€˜monoatomicâ€™ gas, $C_V = \large\frac{3R}{2}$

Thus, $C_V = \large\frac{3 \times 8.31\: (J/mol-K) }{ 2}$$ = \large\frac{3 \times 8.31}{(2 \times 4.18)} $$ \sim 3\: cal/(mole-K)$

Let $ \Delta T$ be the rise in temperature when $n$ mole of gas is given $Q$ cal of heat at constant volume.

Then, $Q = nC_V \Delta T$

$ \Rightarrow \Delta T = \large\frac{Q}{nC_V}$$ = 10,000\: cal/[4\: mole \times 3\: cal(mole-K)] = 833\: K$

Thus, final temperature of gas is, $T + \Delta T = 300 + 833\: K = 1133\: K = 860^{\circ}C$

Ans : (A)

Ask Question

Take Test

x

JEE MAIN, CBSE, AIPMT Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...