Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

The value of $\lambda$ for which the vectors $3\hat i+6\hat j+\hat k $ and $ 2\hat i+4\hat j+\lambda\hat k$ are parallel is

Can you answer this question?

1 Answer

0 votes
  • $\overrightarrow a.\overrightarrow b=|\;a\;|\;|\;b\;| \cos \theta$
Let $\overrightarrow a=3\hat i+6\hat j+\hat k\:and\:\overrightarrow b=2\hat i+4\hat j+\lambda\hat k$
It is given that $\overrightarrow a$ is parallel to $\overrightarrow b$
$=>\theta=0\qquad \cos 0=1$
On substituting for $\theta$
$\overrightarrow a.\overrightarrow b=|\;a\;|\;|\;b\;| \cos \theta$
$\overrightarrow a.\overrightarrow b=|\; \overrightarrow a\;|\;|\; \overrightarrow b\;|\; \times 1$
On substituting for $\overrightarrow a$ and $\overrightarrow b$
(ie) $(3\hat i+6\hat j+\hat k).(2\hat i+4\hat j+\lambda k)$
$=\sqrt {(3)^2+(6)^2+(1)^2}.\sqrt {(2)^2+(4)^2+(\lambda)^2}$
$=(6+24+\lambda)=\sqrt {9+36+1}.\sqrt {4+16+\lambda^2}$
$(30+\lambda)=\sqrt {46}. $ $\sqrt {20+\lambda^2}$
Squaring on bothsides we get,
$(30+ \lambda)^2=46(20+\lambda^2)$
$=>900+60 \lambda +\lambda^2=920+46 \lambda^2$
On simplifying we get,
$45\lambda^2-60 \lambda+20=0$
Divide throughout by $5$
$9\lambda^2-12 \lambda+4=0$
$=>(3 \lambda-2)^2=0$
$=>3 \lambda-2=0$
Therefore $\lambda =\large\frac{2}{3}$
Hence the correct option is $A$
answered May 28, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App