Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

The vector from origin to the points $A$ and $B$ are $\overrightarrow{a}=2\hat i-3\hat j-2\hat k$ and $\overrightarrow{b}=2\hat i+3\hat j-\hat k,$ respectively,then the areqa of triangle $OAB$ is

\[(A)\;340\quad(B)\;\sqrt {25}\quad(C)\;\sqrt {229}\quad(D)\;\frac{1}{2}\sqrt {229}\]
Can you answer this question?

1 Answer

0 votes
  • Area of $\Delta$ is = $\large\frac{1}{2}$$|\overrightarrow a \times\overrightarrow b |$
Let $\overrightarrow a=2\hat i-3\hat j-2\hat k$ and $\overrightarrow b=2\hat i+3\hat j-\hat k$
Area of $\Delta$ is = $\large\frac{1}{2}$$|\overrightarrow {OA} \times\overrightarrow {OB} |$
$\qquad \qquad =>\large\frac{1}{2}$$|\overrightarrow a \times\overrightarrow b |$
Let us first determine $\overrightarrow a \times\overrightarrow b$
$\overrightarrow a\times\overrightarrow b=\left|\begin{array}{ccc}\hat i&\hat j&\hat k\\2&-3&-2\\2&3&-1\end{array}\right|$
On expanding we get,
$=(3+6)\hat i-(-2+4)\hat j+(6+6)\hat k$
On simplifying we get,
$=9\hat i-2\hat j+12\hat k$
$|\overrightarrow a\times\overrightarrow b|=\sqrt{9^2+(-2)^2+12^2}$
$\qquad\qquad=\sqrt {81+4+144}$
$\qquad\qquad=\sqrt {229}$
We know that area of the triangle is= $\large\frac{1}{2}$$\sqrt {229}$
Area of $\Delta$ OAB=$\frac{1}{2}\sqrt{229}$
Hence the correct option is $D$
answered May 28, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App