Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

For any vector $\overrightarrow{a}$,the value of $(\overrightarrow{a}.\hat i)^2+ (\overrightarrow{a}.\hat j)^2+ (\overrightarrow{a}.\hat k)^2 $ is equal to

Can you answer this question?

1 Answer

0 votes
  • $\hat i \times \hat i=0,\hat j \times \hat j=0,\hat k \times \hat k=0$
  • $\hat i \times \hat j=\hat k,\hat j \times \hat k=\hat i\;and \; \hat k \times \hat i=\hat j$
Given $|\overrightarrow a \times \hat i|^2+|\overrightarrow a \times \hat j|^2+|\overrightarrow a \times \hat k|^2$
Let $\overrightarrow a =a_1\hat i+a_2 \hat j+a_3 \hat k$
Then $\overrightarrow a \times \hat i=(a_1 \hat i+a_2 \hat j+a_3 \hat k) \times \hat i$
On expanding we get,
$a_1(\hat i \times \hat i)+a_2 (\hat j \times \hat i)+a_3 (\hat k \times \hat i)$
We know $\hat i \times \hat i=0,\hat j \times \hat i=-\hat k\;and \; \hat k \times \hat i=\hat j$
$=-a_2 \hat k+a_3 \hat j$
Therefore $|\overrightarrow a \times \hat i|^2={a_2}^2+{a_3}^2$
Similarly $|\overrightarrow a \times \hat j |^2=(a_1 \hat i+a_2 \hat j+a_3 \hat k) \times \hat j$
$=a_1(\hat i \times \hat j)+a_2 (\hat j \times \hat j)+a_3 (\hat k \times \hat j)$
$=a_1 \hat k-a_3 \hat i$
Therefore $|\overrightarrow a \times \hat j|^2={a_1}^2+{a_3}^2$
Similarly $|\overrightarrow a \times \hat k |^2=(a_1 \hat i+a_2 \hat j+a_3 \hat k) \times \hat k$
$=a_1(\hat i \times \hat k)+a_2 (\hat j \times \hat k)+a_3 (\hat k \times \hat k)$
$=-a_1 \hat j+a_2 \hat i$
$|\overrightarrow a \times \hat k|^2={a_1}^2+{a_2}^2$
Therefore $|\overrightarrow a \times \hat i|^2+|\overrightarrow a \times \hat j|^2+|\overrightarrow a \times \hat k|^2$
But ${a_1}^2+{a_2}^2+{a_3}^2=|\overrightarrow a|^2$
$=2 |\overrightarrow a|^2$
Hence $D$ is the correct optiuon
answered May 29, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App