Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

The vector $\hat i+\lambda\hat j+\hat k,\hat i+\hat j-\hat k$ and $3\hat i+6\hat j-5\hat k$ are coplanar if

\[(A)\;\lambda=-2\quad (B)\;\lambda=0\quad(C)\;\lambda=1\quad (D)\;\lambda=-1\]
Can you answer this question?

1 Answer

0 votes
  • If three vectors are coplanar, then $[a,b,c]=0$
Let $\overrightarrow a=\hat i+\lambda\hat j+\hat k,$ $\overrightarrow b=\hat i+\hat j-\hat k$ and $\overrightarrow c=3\hat i+6\hat j-5\hat k$
If three vectors are coplanar, then $[a,b,c]=0$
= $ \begin{vmatrix} 1 & \lambda & 1 \\ 1 & 1 & -1 \\ 3 & 6 & -5 \end{vmatrix} $
On expanding we get,
$=1(-5+6)-\lambda(-5+3)+1(6-3)= 0 $
On simplifying we get,
=>$2 \lambda=-4$
=>$ \lambda=-2$
Hence $A$ is the correct option
answered May 29, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App