logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

The vector $\hat i+\lambda\hat j+\hat k,\hat i+\hat j-\hat k$ and $3\hat i+6\hat j-5\hat k$ are coplanar if

\[(A)\;\lambda=-2\quad (B)\;\lambda=0\quad(C)\;\lambda=1\quad (D)\;\lambda=-1\]
Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • If three vectors are coplanar, then $[a,b,c]=0$
Let $\overrightarrow a=\hat i+\lambda\hat j+\hat k,$ $\overrightarrow b=\hat i+\hat j-\hat k$ and $\overrightarrow c=3\hat i+6\hat j-5\hat k$
If three vectors are coplanar, then $[a,b,c]=0$
= $ \begin{vmatrix} 1 & \lambda & 1 \\ 1 & 1 & -1 \\ 3 & 6 & -5 \end{vmatrix} $
On expanding we get,
$=1(-5+6)-\lambda(-5+3)+1(6-3)= 0 $
On simplifying we get,
=>$1+2\lambda+3=0$
=>$2 \lambda=-4$
=>$ \lambda=-2$
Hence $A$ is the correct option
answered May 29, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...