Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

If $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are unit vectors such that$\mid\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\mid=0$,then the value of $\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a}$ is

Can you answer this question?

1 Answer

0 votes
  • If the magnitude of the three vectors in a triangle equal, then it is an equilateral triangle
  • $\overrightarrow {a}\overrightarrow {b}=|\overrightarrow a||\overrightarrow b| \cos \theta$
$|\overrightarrow a|=1,|\overrightarrow b|=1,|\overrightarrow c|=1$
Given $|\overrightarrow a|+|\overrightarrow b|+|\overrightarrow c|=0$
Since the magnitudes of the three vectors are equal and also $\overrightarrow a+\overrightarrow b+\overrightarrow c=0$
The three vectors should form an equilateral triangle whose angles are $60^{\circ}$
$\overrightarrow a.\overrightarrow b=|\overrightarrow a||\overrightarrow b|\cos (\pi-60 ^{\circ})$
But $ (\pi-60^{\circ})$
$\qquad =1.1.\bigg(\large\frac{-1}{2}\bigg)$
$\overrightarrow b.\overrightarrow c=|\overrightarrow b||\overrightarrow c|\cos (\pi-60 ^{\circ})$
$\qquad =1.1.\bigg(\large\frac{-1}{2}\bigg)$
Hence on substituting the values we get,
Therefore $\overrightarrow a.\overrightarrow b+\overrightarrow b.\overrightarrow c+\overrightarrow c.\overrightarrow a=\bigg(\large\frac{-1}{2}\bigg)+\bigg(\frac{-1}{2}\bigg)+\bigg(\frac{-1}{2}\bigg)$
Hence the correct option is $C$
answered May 29, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App