Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

The vectors $\overrightarrow{a}=3\hat i+2\hat j+2\hat k$ and $\overrightarrow{b}=-\hat i+2\hat k$ are the adjacent sides of a parallelogram .The acute angle between its diagonals is__________.

$\begin{array}{1 1}(A)\;\sin ^{-1} \bigg(\sqrt {\large\frac{84}{85}}\bigg) \\(B)\; \cos^{-1}\large\frac{1}{\sqrt{85}} \\(C)\;\cos ^{-1} \bigg(\sqrt {\large\frac{85}{84}}\bigg) \\(D)\; \sin^{-1}\large\frac{4}{\sqrt{30}} \end{array} $

Can you answer this question?

1 Answer

0 votes
  • $\sin \theta=\large\frac{|\overrightarrow a \times \overrightarrow b|}{|\overrightarrow a||\overrightarrow b|}$
Let $\overrightarrow a=3 \hat i+2 \hat j+2 \hat k$ and $\overrightarrow b=-\hat i+2 \hat k$
Given $\overrightarrow a$ and $\overrightarrow b$ are the adjacent sides of the parallelogram.
Therefore $\sin \theta=\large\frac{|\overrightarrow a \times \overrightarrow b|}{|\overrightarrow a||\overrightarrow b|}$
$|\overrightarrow a|=\sqrt {(3)^2+(2)^2+(2)^2}$
$\qquad= \sqrt {9+4+4}$
$\qquad= \sqrt {17}$
$|\overrightarrow b|=\sqrt {(-1)^2+(2)^2}$
$\qquad= \sqrt {1+4}$
$\qquad= \sqrt {5}$
$\overrightarrow a \times \overrightarrow b$$=\begin {vmatrix} \hat i & \hat j & \hat k \\ 3 & 2 & 2 \\ -1 & 0 & 2 \end {vmatrix}$
$\qquad\quad=\hat i(4-0)-\hat j(6+2)+\hat k(0+2)$
$\qquad\quad=4 \hat i-8 \hat j+2 \hat k$
$|\overrightarrow a \times \overrightarrow b| =\sqrt {4^2+8^2+2^2}$
$\qquad\qquad=\sqrt {84}$
Now substituting the values
Therefore $\sin \theta=\large\frac{\sqrt {84}}{\sqrt {17} \sqrt 5}$
$\qquad\qquad\qquad=\large\frac{\sqrt {84}}{\sqrt {85}}$
Therefore $\theta=\sin ^{-1} \bigg(\sqrt {\large\frac{84}{85}}\bigg)$
answered May 30, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App