Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

True-or-False: If $\mid \overrightarrow{a}+\overrightarrow{b}\mid=\mid \overrightarrow{a}-\overrightarrow{b}\mid$,then the vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ are orthogonal.

Can you answer this question?

1 Answer

0 votes
  • $|\overrightarrow a+\overrightarrow b|^2=(\overrightarrow a+\overrightarrow b).(\overrightarrow a+\overrightarrow b)=|\;a\;|^2+|\;b\;|^2+2 \overrightarrow a.\overrightarrow b$
  • $|\overrightarrow a-\overrightarrow b|^2=(\overrightarrow a-\overrightarrow b).(\overrightarrow a-\overrightarrow b)=|\;a\;|^2+|\;b\;|^2-2 \overrightarrow a.\overrightarrow b$
We know that $|\overrightarrow a+\overrightarrow b|^2=(\overrightarrow a+\overrightarrow b).(\overrightarrow a+\overrightarrow b)$
$= |\overrightarrow a|^2+|\overrightarrow b|^2+2\overrightarrow a.\overrightarrow b$ and
$|\overrightarrow a-\overrightarrow b|^2=|\overrightarrow a|^2+|\overrightarrow b|^2-2\overrightarrow a.\overrightarrow b$
Given that $ |\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|$
$\Rightarrow\: |\overrightarrow a+\overrightarrow b|^2=|\overrightarrow a-\overrightarrow b|^2$
Substituting the values of $|\overrightarrow a+\overrightarrow b|^2$ and $|\overrightarrow a-\overrightarrow b|^2$ we get
$ \Rightarrow |\overrightarrow a|^2+|\overrightarrow b|^2+2\overrightarrow a.\overrightarrow b=|\overrightarrow a|^2+|\overrightarrow b|^2-2\overrightarrow a.\overrightarrow b$
$ \Rightarrow 4\overrightarrow a.\overrightarrow b=0 $
$ \Rightarrow \overrightarrow a.\overrightarrow b=0 \Rightarrow \overrightarrow a\: and\: \overrightarrow b \: are \perp$.
Hence it is a $True$ statement
answered May 30, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App