logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

Find the solution of $\Large \frac{dy}{dx}\normalsize =2^{y-x}.$

$\begin{array}{1 1}(A)\; 2^{-y}-2^{-x}=c \\ (B)\; 2^{-y}+2^{-x}=c \\ (C)\; 2^{y}+2^{x}=c \\(D)\; 2^{-x}-2^{y}=c \end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • A relation between the dependent and independent variable which when substituted in the differential equation reduces it to an identify is called a solution.
  • Form $\large\frac{dy}{dx}=f(x,y),$ when variable are seperable we express it in the form $f(x)dx=g(y) dy$
  • Then $\int g(y)dx=\int f(x) dx+c$
  • $\int a^xdx=(a^x/\log\;a)+c$
Given $\large\frac{dy}{dx}$$=2^{y-x}$
Clearly here the variables can be seperated to the form $f(x)dx=g(y)dy$
(ie) $\Large\frac{dy}{dx}=\Large\frac{2^y}{2^x}$
On seperating the variables we get,
$\Large\frac{dy}{2^y}=\frac{dx}{2^x}$
=>$2^{-y} dy =2^{-x} dx$
Integrating on both sides we get
$\int 2^{-y}dy=\int 2^{-x} dx$
$\int a^xdx=\Large\frac{a^x}{\log\;a}$$+c$
$\Large\frac{2^{-y}}{\log 2}=\frac{2^{-x}}{\log 2}$$+c$
=>$ 2^{-y}=2^{-x}+c$
or $ 2^{-y}-2^{-x}=c$
answered May 7, 2013 by meena.p
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...