Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

Solve the differential equation$\Large \frac{dy}{dx}\normalsize =2xy-y$

$\begin{array}{1 1}(A)\;x=c\;e^{\large y-y^2} \\(B)\;y=c\;e^{\large x-x^2} \\ (C)\;c=xy \\(D)\;x\;e^{\large y-y^2}=c \end{array} $

Can you answer this question?

1 Answer

0 votes
  • If $\large\frac{dy}{dx}$$=f(x,y),$ where variables are seperable.
  • We express it in the form $f(x)dx=g(y)dy$
  • Then $\int f(x)dx=\int g(y)dy$
  • $\int \large\frac{dx}{x}$$=\log |x|+c$
Given $\large\frac{dy}{dx}$$=2xy-y$
This can be written as
On seperating the variables we get,
Integrating on both sides we get,
$\int\large\frac{dy}{y}$$=\int (2x-1)dx$
$\log _e y=\bigg( \large\frac{2x^2}{2}-x\bigg)+c$
=>$\log _e y=x^2-x+c$
Converting this to exporential form we get,
$c\;e^{\large x-x^2}=y$
Hence the required equation is
$y=c\;e^{\large x-x^2}$
answered May 8, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App