Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

Solve the differential equation $\Large \frac{dy}{dx}\normalsize=1+x+y^2+xy^2,$when y=0,x=0.

Can you answer this question?

1 Answer

0 votes
  • A linear differential equation of the form.
  • $ \large\frac{dy}{dx}$$=f(x),$ can be solved by seperating the variable and then integrating it.
  • $\int \large\frac{dx}{x^2+a^2}=\frac{1}{a}$$\tan ^{-1} \bigg(\large\frac{x}{a}\bigg)$$+c$
Given $\large\frac{dy}{dx}$$=1+x+y^2+xy^2$ when $y=0,x=0$
This can be written as $\large\frac{dy}{dx}$$=(1+x)+y^2(1+x)$
=>$ \large\frac{dy}{dx}$$=(1+x)(1+y^2)$
Now seperating the variables we get,
Now integrating on both sides we get,
$\int \large\frac{dy}{1+y^2}$ is in the form of $\int \large\frac{dx}{x^2+a^2}=\frac{1}{a}$$ \tan ^{-1} (\large\frac{x}{a})+c$
$\tan ^{-1} \bigg(\large\frac{y}{1}\bigg)$$=x+\large\frac{x^2}{2}$$+c$
$\tan ^{-1} y=x+\large\frac{x^2}{2}$$+c$
Let us find the value of c, by substituting the given value of x and y
$\tan ^{-1}(0)=0+0+c$
But $\tan ^{-1} (0)=0$
Therefore $c=0$
Hence the required solution is
$\tan ^{-1}y =x+\large\frac{x^2}{2}$$=0$
$y =\tan \bigg(x+\large\frac{x^2}{2}\bigg)$
answered May 16, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App