logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Relations and Functions
0 votes

Show that the function \(f : R \to R\) given by \(f (x) = x^3\) is injective.

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • A function $f: X \rightarrow Y$ where for every $x1, x2 \in X, f(x1) = f(x2) \Rightarrow x1 = x2$ is called a one-one or injective function.
Given $f : R \to R$ define by $f(x) = x^3$
A function $f: X \rightarrow Y$ where for every $x1, x2 \in X, f(x1) = f(x2) \Rightarrow x1 = x2$ is called a one-one or injective function.
Let $f(x)=f(y) \rightarrow$ $x^3=y^3$
This is possible only if $x=y \rightarrow f$ is injective.
answered Feb 27, 2013 by meena.p
edited Mar 20, 2013 by balaji.thirumalai
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...