Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

If y(x) is a solution of $\Large\frac{2-\sin x}{1-y}\bigg(\frac{dy}{dx}\bigg)\normalsize=-\cos x$ and y(0)=1,then find the value of $\frac{1}{2}.$

Can you answer this question?

1 Answer

0 votes
  • A linear differential equation of the form.
  • $ \large\frac{dy}{dx}$$=f(x),$ can be solved by seperating the variables and then integrating it.
  • $ \int \large\frac{dx}{x+a}$$=\log |x+a|+c$
Step 1:
$\large\frac{2-\sin x}{1-y}\bigg(\frac{dy}{dx}\bigg)$$=-\cos x$
Now seperating the variables we get,
$\large\frac{dy}{1-y}=\frac{-\cos x dx}{2 -\sin x}$
Let us integrate on both sides,
$\int \large\frac{dy}{1-y}=\int \frac{-\cos x dx}{2 -\sin x}$
we know $\int \large\frac{dy}{1-y}$$=-\log (1-y)$
$=\log \bigg(\large\frac{1}{1-y}\bigg)$-----(1)
Consider $\int \large\frac{-\cos x dx}{2 -\sin x}$
Put $2-\sin x=t$. Differentiating with respect to t,
$-cos xdx=dt$
Now substituting this we get
$\int \large\frac{dt}{t}$$=\log t$
Now substituting for t we get
$\log |2 -\sin x|$-----(2)
Step 2:
Hence combining equ (1) and equ(2) we get,
$\log \bigg( \large\frac{1}{1-y}\bigg)$$=\log |2-\sin x|+\log c$
$\log \bigg| \large\frac{1}{1-y}\bigg|$$=\log |c(2-\sin x)|$
=> $\large\frac{1}{1-y}$$=c(2-\sin x)$
Step 3:
Given $y(0)=-1$
=>When $x=0,y=1$
Substituting this in the above equation we get
$\large\frac{1}{1+1}$$=c(2-\sin 0)$
But $\sin 0=0$
$=\large\frac{1}{2} $$=2c=>c=\large\frac{1}{4}$
Hence $\large\frac{1}{1-y}=\frac{1}{4}$$(2-\sin x)$
We are asked to find $y(1/2)$
=>$x=1/2$ and we have to find the value of y
Hence $x=\large\frac{1}{2},$$y=\large\frac{1}{3}$
answered May 9, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App