Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

Form the differential equation having $y=(\sin^{-1}x)^2+A\cos^{-1}x+B,$where A and B are arbitrary constants,as its general solution.

Can you answer this question?

1 Answer

0 votes
  • A differential equation is a linear differential equation if it is expressible in the form : $ P_0 \Large\frac{d^ny}{dx^n}$$+P_1 \Large\frac{d^{n-1}y}{dx^{n-1}}$$+P_2\Large \frac{d^{n-2}y}{dx^{n-2}}$$+...P_n y=0$ Where $P_0,P_1....$ are constants or functions of the independent of variable x
  • $\large\frac{d}{dx}$$(\sin ^{-1}x)=\large\frac{1}{\sqrt {1-x^2}}$
  • $\large\frac{d}{dx}$$(uv)=\large\frac{du}{dx}.$$v+\large\frac{dv}{dx}.$$u$
Given $y= (\sin ^{-1}x)^2+A\cos ^{-1}x+B$
Let us first differentiate with respect to x on both sides
$\large\frac{dy}{dx}=\frac{2\sin ^{-1}x}{\sqrt {1-x^2}}$$+A\bigg(\large\frac{-1}{\sqrt {1-x^2}}\bigg)+0$
$\large\frac{dy}{dx}=\frac{2\sin ^{-1}x}{\sqrt {1-x^2}}-\frac{A}{\sqrt {1-x^2}}$
This can be written as
$\sqrt {1-x^2}.\large\frac{dy}{dx}$$=2 \sin ^{-1}x-A$
Now again differentiating on both sides w.r.t x
Since $\sqrt {1-x^2}.\large\frac{dy}{dx}$ are two functions in the product form, we can apply the product rule $\large\frac{d}{dx}$$(uv)=u.\large\frac{d}{dx}$$(v)+v.\large\frac{d}{dx}$$(u)$
Here let $u=\sqrt {1-x^2},$ hence $ \large\frac{d}{dx}$$(v)=\large\frac{1}{2 \sqrt {1-x^2}}$$(-2x)$
$v=\large\frac{dy}{dx}\qquad \frac{d}{dx}$$(v)=\large\frac{d^2y}{dx^2}$
$\large\frac{d}{dx}$$(\sin ^{-1}x)=\large\frac{1}{\sqrt {1-x^2}}$
$\sqrt {1-x^2}.\large \frac{d^2y}{dx^2}+\frac{dy}{dx}.\frac{-2x}{2\sqrt {1-x^2}}$$=2 \large\frac{1}{\sqrt {1-x^2}}-0$
$\sqrt {1-x^2}.\large \frac{d^2y}{dx^2}-\frac{x}{\sqrt {1-x^2}}.\frac{dy}{dx}$$= \large\frac{2}{\sqrt {1-x^2}}$
$\Large\frac{(1-x^2)\bigg(\frac{d^2y}{dx^2}\bigg)-x\bigg(\frac{dy}{dx}\bigg)}{\sqrt {1-x^2}}=\frac{2}{\sqrt {1-x^2}}$
=>$(1-x^2)\large\frac{d^2y}{dx^2}$$-x \large\frac{dy}{dx}$$-2=0$
answered May 14, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App