Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

Solve: $x^2\Large \frac{dy}{dx}\normalsize =x^2+xy+y^2$

Can you answer this question?

1 Answer

0 votes
  • A linear differential equation of the form.$ \large\frac{dy}{dx}$$=f(x,y)$ is a linear homogenous differential equation and it can be solved by substituting $y=vx$ and $\large\frac{dy}{dx}$$=v+x \large\frac{dv}{dx}.$
  • $ \int \large\frac{dx}{x^2+a^2}=\frac{1}{a} $$\tan ^{-1}\bigg(\large\frac{x}{a}\bigg)+c$
Step 1:
Given $ x^2 \large\frac{dy}{dx}$$=x^2+xy+y^2$
Divide throughout by $x^2$
Since this is a homologous differential equation.We can solve this equation by substituting $y=vx$ and $\large\frac{dy}{dx}$$=v+x\large\frac{dv}{dx}$
$v+x \large\frac{dv}{dx}$$=1+\large\frac{vx}{x}+\frac{v^2x^2}{x^2}$
$=>x \large\frac{dv}{dx}$$=1+v+v^2-v$
$=>x \large\frac{dv}{dx}$$=1+v^2$
Step 2:
Now seperating the variables we get,
$\large\frac{dv}{1+v^2}= \frac{dx}{x}$
Now integrating on both sides we get,
$\large \int \frac{dv}{1+v^2}= \int \frac{dx}{x}$
$\large\frac{dv}{1+v^2}$ is of the form $ \int \large\frac{dx}{x^2+a^2}=\frac{1}{a} $$\tan ^{-1}\bigg(\large\frac{x}{a}\bigg)$
$\large \int \frac{dv}{1+v^2}$$= \tan ^{-1}(v)$
Therefore $\tan ^{-1}(v)=\log |x|+c$
Substituting for $v=\large\frac{y}{x}$ we get,
$\tan ^{-1}\bigg(\large\frac{y}{x}\bigg)$$=\log(x)+c$
answered May 21, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App