Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

Find the general solution of the differential equation $(1+y^2)+(x-e^{\large\tan^{-1}y})\Large \frac{dy}{dx}$=0

Can you answer this question?

1 Answer

0 votes
  • A linear differential equation of the form $ \large\frac{dx}{dy}$$+Py=Q,$ has the general solution as $xe^{\int pdy}=\int Q. e ^{\int pdy}.dy+c$ Where $e^{\int pdy}$ is the integrating factor (I.F)
  • $ \int \large\frac{dx}{x^2+a^2}=\frac{1}{a} $$\tan ^{-1}\bigg(\large\frac{x}{a}\bigg)+c$
Step 1:
Given $(1+y^2)+(x-e^{\tan ^{-1}y})\large\frac{dy}{dx}=0$
This can be written as
$\large\frac{dx}{dy}=\frac{(x-e^{\Large\tan ^{-1}y})}{1+y^2}$
$\large\frac{dx}{dy}+\frac{x}{1+y^2}=\frac{e^{\Large\tan ^{-1}y}}{1+y^2}$
Clearly this represents a linear differential equation which is of the form
Here $P= \large\frac{+1}{1+y^2}$ and $ Q=\large\frac{e^{\Large\tan ^{-1}y}}{1+y^2}$
Let us first find the integrating factor I.F which $e^{\int pdy}$
$e^{\large\int pdy}=e^{\Large\int \frac{1}{1+y^2}dy}$
Consider $\int \large\frac{1}{1+y^2}$$dy$
On integrating this we get $\tan ^{-1}y$
Therefore $e^{\large \int pdy}=e^{\large\tan ^{-1}y}$
The solution for the linear differential equation is
Step 2:
$x.e^{\large\int pdy}=\int Q.e^{\large\int pdy}dy+c$
Now substituting the I.F we get
$x.e^{\large\tan ^{-1}y}=\int \large\frac{e^{\Large\tan ^{-1}y}}{1+y^2}.e^{\large\tan ^{-1}y}$$dy+c$
$=\int \large\frac{e^{\Large2\tan ^{-1}y}}{1+y^2}$$dy+c$
Put $\tan ^{-1}y=t,$ on differentiating w.r.t x we get,
Now substituting this we get,
$x.e^{\large\tan ^{-1}y}=\int e^{2t}.dt$
On integrating we get
$x.e^{\large\tan ^{-1}y}=\large\frac{1}{2}\int e^{2t}$$+c$
=>$2x.e^{\large\tan ^{-1}y}= e^{2t}$$+c$
Substituting for t we get,
=>$2x.e^{\large\tan ^{-1}y}= e^{\large2\tan ^{-1}y}$$+c$
Hence the required solution is
$2x.\tan ^{-1}y= e^{\large2\tan ^{-1}y}$$+c$
answered May 9, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App