Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

Find the general solution of $y^2dx+(x^2-xy+y^2)dy=0$

$\begin{array}{1 1}(A)\;\tan ^{-1}\bigg(\large\frac{y}{x}\bigg)+\log y=c \\ (B)\;\tan ^{-1}\bigg(\large\frac{x}{y}\bigg)-\log y=c \\(C)\;\tan ^{-1}\bigg(\large\frac{x}{y}\bigg)+\log y=c \\(D)\;\tan ^{-1}\bigg(\large\frac{y}{x}\bigg)-\log y=c \end{array} $

Can you answer this question?

1 Answer

0 votes
  • A linear differential equation of the form.$ \large\frac{dx}{dy}$$=f(y,x)$ can be solved by substituting $x=vy$ and $\large\frac{dx}{dy}$$=v+y \large\frac{dv}{dy}.$
  • $ \int \large\frac{dx}{x^2+a^2}=\frac{1}{a} $$\tan ^{-1}\bigg(\large\frac{x}{a}\bigg)+c$
Step 1:
Given $y^2dx+(x^2-xy+y^2)dy=0$
This can be written as
Dividing by $y^2$ we get,
This is clearly a homologous differential equation we can solve by substituting $x=vy$ and $\large\frac{dy}{dx}$$=v+y\large\frac{dv}{dy}$
$v+y \large\frac{dv}{dy}=\frac{-v^2y^2}{y^2}+\frac{vy}{y}-1$
Now seperating the variables we get,
Step 2:
Now integrating on both sides we get,
$\int\large\frac{dv}{v^2+1}$ is of the form $ \int \large\frac{dx}{x^2+a^2}=\frac{1}{a} $$\tan ^{-1}\bigg(\large\frac{x}{a}\bigg)+c$
Hence $\tan ^{-1}(v)=-\log y+c$
Substituting for $v=x/y$ we get,
$\tan ^{-1}\bigg(\large\frac{x}{y}\bigg)$$=-\log y+c$
Hence the required solution is $\tan ^{-1}\bigg(\large\frac{x}{y}\bigg)$$+\log y=c$


answered May 9, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App